
Image Classification Using CNN-LSTM Hybrid
Model With Skip Connections

CS 554 - Introduction to Machine Learning and Artificial Neural Networks - Group E

Doğa Yılmaz
Graduate School of Engineering and Science

Özyeğin University
Istanbul, Turkey

doga.yilmaz.11481@ozu.edu.tr

Sena Odabaşı
Graduate School of Engineering and Science

Özyeğin University
Istanbul, Turkey

sena.odabasi@ozu.edu.tr

Onur Kirman
Graduate School of Engineering and Science

Özyeğin University
Istanbul, Turkey

onur.kirman@ozu.edu.tr

Berk Buzcu
Graduate School of Engineering and Science

Özyeğin University
Istanbul, Turkey

berk.buzcu@ozu.edu.tr

Abstract—Recently, with the advance of computer power and
machine learning, there has been an increase in the study of
the image classification problem. There have been approaches
for image classifications that use CNNs and LSTMs. But they
lag important aspects of images when it comes to human-like
classification. The ones that propose human-like accurate models
use massive and extreme deep models that require excessive
computational resources. Motivated by these aforementioned
problems, we proposed a new model that utilizes each of the
best models with skip connections. The proposed model uses
the feedback from LSTM to increase the overall performance
of CNN. We benchmarked with single CNN and LSTM models,
AutoEncoder and CNN + LSTM models over the same dataset
of ours. The results indicate that overall our approach is better
compared to the other models.

Index Terms—CNN, Image Classification, LSTM, Neural Net-
works,

I. INTRODUCTION

Identifying objects have always been a fascinating topic
that computer scientists wanted to achieve. Since the increase
in computational power and advances in machine learning,
researchers started to come up with unique solutions to such
problems. Yet, Image Classification is one of the main prob-
lems in Computer Vision. It takes images and categorizes
them into classes. Convolutional Neural Networks(CNN) is
a deep neural network that consists of layers like Multi-Layer
Perceptrons. They can be used to classify images and object
recognition.

In this project, we proposed a solution method to a single-
label image classification problem that combines Convolu-
tional Neural Networks(CNN) and Long Short-Term Mem-
ory(LSTM). We have prepared the data for the processing part,
data-loader classes, training and testing scripts, a CNN model
similar to LeNet [1] for creating baseline results.

LSTM is a kind of recurrent neural network. They are firstly
introduced by Hochreiter & Schmidhuber [2]. Since the model
is good with classification, we decided to use them in our
project and combined LSTM with a CNN model.

There are four main models: CNN, CNN + LSTM, CNN +
LSTM + Skip Connections and Auto-Encoder. The first model,
CNN, uses Rectified Linear Unit (ReLU) activation function
and Softmax activation function. In the second model, a CNN
model and LSTM are merged. The third model is a developed
version of the second model. Lastly, an autoencoder which
consists of two parts: an encoder and a decoder is selected as
a model to compare the solutions. Between the encoder and
the decoder parts, a softmax function exists.

In order to test our proposed algorithm, we use CIFAR-10
[3], Caltech 101 [4], and Tiny ImageNet [5] datasets. Each
dataset is divided into training and testing parts randomly

The rest of the paper is structured as follows: Section II
Datasets & Data Loaders, Section III a review of literature,
Section IV introduces the proposed methodology, Section V
has the Implementation Details, Section VI contains the results
of the experiments using the proposed model, and Section VII
is the Conclusion.

II. DATASETS & DATA LOADERS

We have collected the datasets to analyze and prepare
them for processing. We used PyTorch library [6] for data
handling. Below more information about our data preparation
is provided.

• CIFAR-10 [3]: CIFAR-10 dataset is pre-loaded in
TorchVision library. The testing and training classes are
already separated with 50000 training, 10000 testing
images. We also reserved 10% of the training data for
validation which took 5000 images out of the training



dataset. In the end, we end up having train, test, and
validation sizes as 45000, 1000, and 5000 respectively.

• Caltech 101 [4]: Similar to the CIFAR-10 dataset, Torch
library has a Caltech101 dataset. There are 8677 images
and 101 classes in it. Similar to others, the dataset
is already separated into training and testing. But the
original version has some flaws such as not equally
distributed classes. So, we have used a method that takes
the most common labels with stratification to overcome
this inequality between classes. In the end, we had 10
classes with train, test, and validation sizes of 2432, 676,
and 271 respectively.

• Tiny ImageNet [5]: Tiny Image Dataset is not pre-loaded
like previous ones. We have downloaded it from its source
and written the necessary data-loader classes to make
our data compatible with PyTorch. Also, we had issues
of scarcity and complexity of data problems, meaning
that each class has a huge amount of image set where
there exist 200 classes. This required us to reduce the
size first to 10, and in the end to even 5. In short,
due to its high complexity, our models do not converge
when they are given a high number of classes. So,
we decreased the label size significantly to observe the
models’ performances. In the end, we had 5 classes with
train, test, and validation sizes of 1800, 500, and 200
respectively.

III. RELATED WORK

Long-Short Term Memory (LSTM) and Convolutional Neu-
ral Networks (CNN) have both been used for image recogni-
tion purposes as well as Natural Language Processing (NLP)
purposes for a long time. One instance is Yao and Guan’s [7]
improved structure with LSTM for NLP. The research showed
that LSTM based models show an increased F1 score with
fewer resources than word2vec approaches. Similarly, LSTM
was also used for vision-related problems. But LSTM can’t
process images alone given the dimensionality issues. Hence,
Bappy et al. [8] propose a hybrid architecture with LSTM
and encoder-decoder layers for the image forgery detection
subproblem.

AutoEncoder is the simple process of stripping the data to
form one smaller representation of it, and then regenerating
the image from this representation. It is one of the most fun-
damental unsupervised learning algorithms, with the intention
of eliminating a teacher and learning only from the data [9].
AutoEncoders have been tried in the classification problems
as well. Due to the model’s nature, we can first encode the
data and use the encoded data to make a classification. One
example of this is Geng et al. [10], where they classify high
resolution synthetic aperture radar images classification. Due
to the model’s nature, it handles the high resolution images
better than the other proposed architectures.

In order to compare the solutions, a CNN paper from
literature is selected as benchmark for each dataset. Doon [11]
made CIFAR-10 classification using Deep CNN and achieved
90% accuracy with training data and 87.57% with testing data.

Feng [12] proposed KamiNet which is a CNN model for Tiny
Image Dataset. In KamiNet, the depths are increased, the data
is augmented with Crop+Flip scheme and they make data
filtering. Their training accuracy is 97.5% and testing accuracy
is 49.5%. Yang [13] implemented 18 layer resnet convolutional
neural network and for the Caltech 101 it achieved 100%
accuracy with training and 63.38% accuracy with testing data.

IV. METHODOLOGY

For the training methods, we have utilized a few loss
functions, meaning functions that we utilize to metric our
model’s success during training, and combinations of them
where necessary for models that needed it.

CrossEntropyLoss = −
outputsize∑

i=1

yi ∗ loýi

We mainly used the Cross Entropy Loss function in our
models, but for the AutoEncoders, we had to alter the loss
function a bit to better fit the AutoEncoder classification idea,
for the purposes of that, we also used the MSE Loss function.

MSELoss =
1

n

n∑
i=1

(yi − ŷi)
2

We used the below formula to mix both these loss functions.

AutoEncoderLoss = 0.5 ∗MSELoss(encodedoutput)+

0.5 ∗ CrossEntropyLoss(modeloutput)

We take the encoded output and run it through a fully
connected layer with 10 outputs, then we multiply the outcome
with 0.5 and add it to the model’s outcome, multiplied by 0.5.
This way, we take into consideration the model’s classification
part as well as including the decoded part.

For our fully connected layers, we have used the RELU
activation layers and logarithmic softmax at the outputs.

Relu(x) =

{
0 x ≤ 0
x otherwise

The softmax activation layer is a smooth approximation to
the argmax value, which means it helps us smooth out and
normalize the output data in order to classify our prediction.

Softmax =
exp(xi)∑
j exp(xj))

We have mainly utilized the LogSoftmax function as it can
be seen below. The LogSoftmax function’s logarithmic nature
helps us penalise the features more than the Softmax activation
function, hence it offers a sense of numerical stability. This
behavior is observed to make the models converge faster, and
is usually appended as a layer at the end of neural networks.



Fig. 1. RELU Activation Function

Fig. 2. Softmax Activation Function

LogSoftmax = log(
exp(xi)∑
j exp(xj))

)

MaxPooling helps us downsample our data after convolution
steps. It helps us eliminate overfitting by outshining the
features in sub regions within the data. Figure 3 is a 2D
representation of this process, as you can see, from kernels
of size two, we pick the largest element and place it on the
corresponding slot, esentially reducing a matrix of size 4x4 to
2x2 with the vital features extracted.

Fig. 3. 2D MaxPooling

While testing our algorithms, we have only considered the
exact match ratio (accuracy) of our methods. We ran validation
sets every 5 epochs.

V. IMPLEMENTATION DETAILS

A. Preprocessing

1) Data Transforms: Transformations of datasets are
needed to be able to use them in the PyTorch [6] environment.
By its nature, PyTorch uses tensors as its computational object.
For that purpose, we added a conversion of images into torch
format. Also, while converting them into a tensor object, we
normalize the images by centering their pixel value on mean
and standard deviation to between 0-1. Moreover, for datasets,
like Caltech101 [4], we needed an additional transformation

of input sizes. Because it has images that are not uniformly
shaped and images that can have a single channel instead of
RGB. This requires additional care of transformation. For that
purpose, we added a resizing operation that can convert any
given input to a 32x32 shape and an image with a channel
size of 3 to make sure that each image in the dataset has an
RGB color format.

2) Data Augmentation: Our goal is to become resistant to
errors while increasing our performance. So for that purpose,
we used a technique called data augmentation that can help
us create resilient and powerful models. It can increase the
number of data we have using the existing data and can
decrease the chance of overfitting in our training. It can be
composed of different image transformations such as random
crops, rotations, flips, and color modifications. We used only
the image flips on both vertical and horizontal axis. This
ensures that we train a model that is not prone to such
rotational and flipped distortions in testing while prohibiting
the overfitting to a certain extent.

3) Parser: In machine learning, we use a lot of parameters
to train our models and get the best results on the test dataset.
While doing so, things can pretty complicated and time-
consuming. To overcome that issue, we used a best practice
of hyper-parameter parser that can set our parameters from
console command on the fly. We used argparse which is a
command-line parser library. We created 6 different arguments
for our parser which are model, dataset, batch size, epoch,
learning rate, and validation frequency selections.

B. Models

Whit in the scope of this project, we have designed and
implemented 4 different classifier models by using different
building blocks and techniques. In this section, we will explain
the models and their implementation thoroughly.

1) Model 1: CNN Model: Today in the literature CNN
models are widely used in image classification tasks. For a
baseline score, we have selected CNNs since their performance
on this task is proven by other work [14]. Our model has
6 convolutional layers for feature extraction and 3 fully
connected layers for classification. We used Rectified Linear
Unit (ReLU) as activation for hidden layers. Also, we have
used the Softmax function as the activation function for the
output layer. Visualization of our CNN model can be found
in Fig. 4.

Fig. 4. Architecture of our first model



2) Model 2: CNN + LSTM Model: Although it is not
commonly used in the literature, some approaches attempt to
merge CNN and LSTM for image classification such as the
model proposed by Yin Q. et al. [15] and Shi X. et al. [16].
Our second model is inspired form already available work
by [15]. Our second model has 6 convolutional layers for
feature extraction. Following that we used a flattening layer to
prepare our data for feeding into the LSTM layer. By using
the LSTM layer we aim is to capture the recurring features of
the provided data. After that, we feed the output of the LSTM
to the fully connected layers to get the classification output.

Fig. 5. Architecture of our second model

3) Model 3: CNN + LSTM + Skip Connection Model: Our
aim in the third model is to mix the first model and the second
model. The architecture is again similar to previous models
starts with 6 convolutional layers which are responsible from
feature extraction. Following that our model has 2 branches
which are LSTM branch and Fully connected branch. After the
operations in each branch we merge them using ’+’ operator
which does element wise summation. Following that there are
3 fully connected layers in our model. The visualization of
our model is shown in figure 6 below. To the best of our
knowledge adding skip connection to a CNN LSTM model is
a novel idea. By doing so we aim to combine characteristics of
both model 1 and model 2 into the same model. In the results
and conclusion we will discuss about the possible benefits and
disadvantages of our model.

Fig. 6. Architecture of our third model

4) Model 4: Auto-Encoder Model: Finally, we have also
decided to include an Auto-Encoder classifier model exper-
imentally since we were curious on how it would perform.
The model acts as a normal auto-encoder would, but before
the decoding process, we take the encoded input and run it
through a fully connected layer to acquire a classification. The
main concern is that we need to consider this fully connected
output in our loss function so it’s performance is also included
in the training. We have created a method in order to improve
to consider the classification task of the model. Figure 7
illustrates our Auto-Encoder model.

Fig. 7. Architecture of our fourth model

VI. RESULTS

In this section, we have made experiments in order to see
the feasibility of proposed models. We have calculated and
compared the results according to the accuracy. Accuracy
is calculated by dividing number of correct classification to
number of total images.

Fig. 8. CNN model training (gray) and validation (orange) set losses

Fig. 9. CNN + LSTM model training (Magenta) and validation (Green) set
losses

The accuracy results of the model can be found in the table
I. We tested the model on three different dataset. As mentioned
in Section II, the datasets are CIFAR-10 [3], Caltech 101 [4],
and Tiny ImageNet. For CIFAR-10 and Caltech 101 datasets,
10 categories are selected and divided into training and testing
parts. But for Tiny ImageNet dataset, the results were not good
when we used 10 categories like the others. So, we decided
to select only 5 categories from Tiny ImageNet.



Fig. 10. CNN + LSTM model with skip connection training (red) and
validation (blue) set losses

Fig. 11. Auto-Encoder model training (orange) and validation (blue) set losses

TABLE I
RESULTS TABLE

CIFAR10 Caltech101 Tiny ImageNet
Number of Images 10000 676 1000
Number of Categories 10 10 5
Batch Size 16 16 16
Epoch 30 30 30
LR 0.0001 0.0001 0.0001
CNN 80% 91% 64%
CNN LSTM 80% 78% 59%
CNN LSTM SKIP 78% 91% 65%
Autoencoder 66% 90% 63%

After a several experiments the optimum parameters are
selected and the final result table is made by using the optimum
parameters. The batch size is 16. We have done experiments
with learning rate 0.01, 0.001 and 0.0001. The best performer
was 0.0001. We have decided to use epoch length as 30.

For CIFAR-10 dataset, first model and second model have
achieved 80% accuracy. Skip connections model was not as
high as the first two models and it performed 78% accuracy.
For the last model, the accuracy was 66%. In Fig 12, the
confusion matrix for model 3 can be seen.

Second dataset was Caltech 101. Model 1 CNN and Model 3
Skip Connections provided same accuracy level which is 91%

Fig. 12. Confusion matrix of CIFAR10 for Model 3: CNN + LSTM + Skip
Connection

for Caltech 101. Model 2, combining LSTM with CNN did
not perform as well as them. An 18 layer Resnet CNN model
had achieved 63.38% accuracy [13]. Our proposed model is
better when it is compared with the benchmark model. In Fig
13, the confusion matrix for model 3 can be seen.

Fig. 13. Confusion matrix of Caltech 101 for Model 3: CNN + LSTM +
Skip Connection

Tiny ImageNet was the most challenging dataset of all.
Very similar to Caltech 101, CNN + LSTM was the worst
model. When Skip Connection is added to the model 2, the
improvement was clearly obtained. Also, model 3 performed
better than KamiNet [12] which only performed 49.5%. They
were working with category size of 200, but we used 5
categories.

In Fig 14, the confusion matrix for model 3 can be seen.
The models performed differently for each dataset. CNN

or CNN + LSTM models are best models for CIFAR10. For
Caltech 101, CNN or CNN + LSTM + Skip Connection
models are the best ones. And for Tiny ImageNet the best
performing model is the proposed model.

VII. CONCLUSION

In this paper, we tried to come up with a new neural network
architecture for image classification problem. We introduced
a model that utilizes LSTM and CNN using skip connections.



Fig. 14. Confusion matrix of Tiny ImageNet for Model 3: CNN + LSTM +
Skip Connection

Also, we rigorously benchmarked our model to models such
as CNN, CNN + LSTM and AutoEncoder over three different
image datasets. These image datasets are CIFAR-10, Caltech
101 and Tiny ImageNet which models perform differently.
Almost all of the benchmark tests, our proposed approach got
better results. For Caltech 101 and Tiny ImageNet datasets,
our proposed model CNN + LSTM + Skip Connection was
the best performer model. On the other hand, for CIFAR10
dataset, CNN or CNN + LSTM may be preferred.

From the loss graphs we also observed that the skip con-
nections has helped CNN + LSTM model converge faster,
so one of the main contributions of the skip connection in
this instance could be considered the improvement on the
computational efficiency of the model.

In the future work, it would be better to explore deeper
networks that mimics the LSTM + CNN with skip connection.
This may increase model’s learning capability and precision.
Moreover, the parameters of the model can be optimized by
Grid Search or a similar method.

ACKNOWLEDGMENT

We would like to thank Prof. Dr. Ethem Alpaydın (Özyeğin
University) for providing the opportunity to research and
analyze of machine learning and computer vision fields in CS
554 - Introduction to Machine Learning and Artificial Neural
Networks graduate course.

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long
time lag problems. Advances in neural information processing systems,
pages 473–479, 1997.

[3] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. (0), 2009.

[4] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object cate-
gories. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(4):594–611, 2006.

[5] Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny imagenet challenge.
Technical Report, 2017.

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[7] Lirong Yao and Yazhuo Guan. An improved lstm structure for natural
language processing. In 2018 IEEE International Conference of Safety
Produce Informatization (IICSPI), pages 565–569, 2018.

[8] Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj, B. S. Manjunath,
and Amit K. Roy-Chowdhury. Hybrid lstm and encoder–decoder
architecture for detection of image forgeries. IEEE Transactions on
Image Processing, 28(7):3286–3300, 2019.

[9] Pierre Baldi. Autoencoders, unsupervised learning, and deep archi-
tectures. In Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham
Taylor, and Daniel Silver, editors, Proceedings of ICML Workshop on
Unsupervised and Transfer Learning, volume 27 of Proceedings of
Machine Learning Research, pages 37–49, Bellevue, Washington, USA,
02 Jul 2012. PMLR.

[10] Jie Geng, Jianchao Fan, Hongyu Wang, Xiaorui Ma, Baoming Li,
and Fuliang Chen. High-resolution sar image classification via deep
convolutional autoencoders. IEEE Geoscience and Remote Sensing
Letters, 12(11):2351–2355, 2015.

[11] Raveen Doon, Tarun Kumar Rawat, and Shweta Gautam. Cifar-10
classification using deep convolutional neural network. In 2018 IEEE
Punecon, pages 1–5. IEEE, 2018.

[12] Shaoming Feng and Liang Shi. Kaminet—a convolutional neural
network for tiny imagenet challenge. CS 231N, 2015.

[13] Yifei Yang and Yuan Jiang. Image classification for caltech101. 2020.
[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[15] Qiwei Yin, Ruixun Zhang, and XiuLi Shao. Cnn and rnn mixed model
for image classification. In MATEC Web of Conferences, volume 277,
page 02001. EDP Sciences, 2019.

[16] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin
Wong, and Wang-chun Woo. Convolutional lstm network: A machine
learning approach for precipitation nowcasting. In Advances in neural
information processing systems, pages 802–810, 2015.


